# The Geometrization of the Local Langlands Correspondence

In The Global Langlands Correspondence for Function Fields over a Finite Field, we introduced the global Langlands correspondence for function fields over a finite field, and Vincent Lafforgue’s work on the automorphic to Galois direction of the correspondence. In this post we will discuss the work of Laurent Fargues and Peter Scholze which uses similar ideas but applies it to the local Langlands correspondence (and this time it works not only for “equal characteristic” cases like Laurent series fields $\mathbb{F}_{q}((t))$ but also for “mixed characteristic” cases like finite extensions of $\mathbb{Q}_{p}$). Note that instead of having complex coefficients like in The Local Langlands Correspondence for General Linear Groups, here we will use $\ell$-adic coefficients.

### I. The Fargues-Fontaine Curve

Let us briefly discuss the idea of “geometrization” and what is meant by Fargues and Scholze making use of V. Lafforgue’s work. Recall that V. Lafforgue’s work concerns the global Langlands correspondence for function fields over a finite field $\mathbb{F}_{q}$, which on one side concerns the space of cuspidal automorphic forms, which are certain functions on $\mathrm{Bun}_{G}(\mathbb{F}_{q})$, which in turn parametrizes $G$-bundles on some curve $X$ over $\mathbb{F}_{q}$, and on the other side concerns representations (or more precisely L-parameters) of the etale fundamental group of $X$ (which can also be phrased in terms of the Galois group of its function field).

Perhaps the first question that comes to mind is, what is the analogue of the curve $X$ in the case of the local Langlands correspondence when the field is not a function field (or more correctly a power series field, since it has to be local) over $\mathbb{F}_{q}$, but some finite extension of $\mathbb{Q}_{p}$? Let $E$ be this finite extension of $\mathbb{Q}_{p}$. Since the absolute Galois group of $E$ is also the etale fundamental group of $\mathrm{Spec}(E)$, perhaps we should take $\mathrm{Spec}(E)$ to be our analogue of $X$.

However, in the traditional formulation of the local Langlands correspondence, it is the Weil group that appears instead of the absolute Galois group itself. Considering the theory of the Weil group in Weil-Deligne Representations, this means that we will actually want $\pi_{1}(\mathrm{Spec}(\breve{E})/\mathrm{Frob}^{\mathbb{Z}})$, where $\breve{E}$ is the maximal unramified extension of $E$ and $\mathrm{Frob}$ is the Frobenius, instead of $\pi_{1}(E)$.

Now, we want to “relativize” this. For instance, in The Global Langlands Correspondence for Function Fields over a Finite Field, we considered $\mathrm{Bun}_{G}(\mathbb{F}_{q})$, which parametrizes $G$-bundles on the curve $X$ over $\mathbb{F}_{q}$. But we may also want to consider say $\mathrm{Bun}_{G}(R)$, where $R$ is some $\mathbb{F}_{q}$-algebra; this would parametrize $G$-bundles on $X\times_{\mathrm{Spec}(\mathbb{F}_{q})}\mathrm{Spec}(R)$ instead. In fact, we need this “relativization” to properly define $\mathrm{Bun}_{G}$ as a stack (see also Algebraic Spaces and Stacks).

The problem with transporting this to the case of $E$ a finite extension of $\mathbb{Q}_{p}$ is that we do not have an “base” like $\mathbb{F}_{q}$ was for the function field case (unless perhaps if we have something like an appropriate version of the titular object in The Field with One Element, which is at the moment unavailable). The solution to this is provided by the theory of adic spaces and perfectoid spaces (see also Adic Spaces and Perfectoid Spaces).

For motivation, let us consider first the case where our field is $\mathbb{F}_{q}((t))$. Let $S=\mathrm{Spa}(R,R^{+})$ be a perfectoid space over $\overline{\mathbb{F}}_{q}$ with pseudouniformizer $\varpi$. Consider the product $S\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}((t)))$. We may look at this as the punctured open unit disc over $S$. It sits inside $\mathrm{Spa}(R^{+})\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}[[t]])$ as the locus where the pseudo-uniformizer $\pi$ of $R$ and the uniformizer $t$ of $\mathbb{F}_{q}[[t]]$ is invertible (or “nonzero”).

In the case where our field is $E$, a finite extension of $\mathbb{Q}_{p}$, as mentioned earlier we have no “base” like $\mathbb{F}_{q}$ was for $\mathbb{F}_{q}((t))$. So we cannot form the fiber products analogous to $S\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}((t)))$ or $\mathrm{Spa}(R^{+})\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}[[t]])$. However, notice that

$\displaystyle \mathrm{Spa}(R^{+})\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}[[t]])\cong \mathrm{Spa}(R^{+}[[t]])$.

This has an analogue in the mixed-characteristic, given by the theory of Witt vectors (compare, for instance $\mathbb{F}_{p}[[t]]$ and its “mixed-characteristic analogue” $\mathbb{Z}_{p}=W(\mathbb{F}_{p})$)! If $\kappa$ is the residue field of $\mathcal{O}_{E}$, we define the ramified Witt vectors $W_{\mathcal{O}_{E}}(R^{+})$ to be $W(R^{+})\otimes_{W(\kappa)}\mathcal{O}_{E})$. This is the analogue of $\mathrm{Spa}(R^{+})\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}[[t]])$. Now all we have to do to find the analogue of $S\times_{\mathrm{Spa}(\mathbb{F}_{q})}\mathrm{Spa}(\mathbb{F}_{q}((t)))$ that we are looking for is to define it as the locus in $W_{\mathcal{O}_{E}}(R^{+})$ where both the uniformizer $\varpi$ of $R^{+}$ and the uniformizer $\pi$ of $\mathcal{O}_{E}$ are invertible!

We denote this locus by $Y_{S}$. But recall again our discussion earlier, that due to the local Langlands correspondence being phrased in terms of the Weil group, we have to quotient out by the powers of Frobenius. Therefore we define the Fargues-Fontaine curve $X_{S}$ to be $Y_{S}/\mathrm{Frob}^{\mathbb{Z}}$.

Aside from our purpose of geometrizing the local Langlands correspondence, the Fargues-Fontaine curve $X_{S}$ is in itself a very interesting mathematical object. For instance, when $S$ is a complete algebraically closed nonarchimedean field over $\mathbb{F}_{q}$, the classical points of $X_{S}$ (i.e. maximal ideals of the rings $B$ such that $X_{S}$ is locally $\mathrm{Spa}(B,B^{+})$) correspond to untilts of $S$ (modulo the action of Frobenius)!

There is also a similar notion for more general $S$. To explain this we need the concept of diamonds, which will also be very important for the rest of the post. A diamond is a pro-etale sheaf on the category of perfectoid spaces over $\mathbb{F}_{p}$, which is the quotient of some perfectoid space $X$ over $\mathrm{Spa}(\mathbb{F}_{p})$ by a pro-etale equivalence relation $R \subset X\times X$ (we also say that the diamond is a coequalizer). An example of a diamond is given by $\mathrm{Spd}(\mathbb{Q}_{p})$. Note that $\mathbb{Q}_{p}$ is not perfectoid, but is the quotient of a perfectoid field we denoted $\mathbb{Q}_{p}^{\mathrm{cycl}}$ in Adic Spaces and Perfectoid Spaces by the action of $\mathbb{Z}_{p}^{\times}$. Now we can take the tilt $(\mathbb{Q}_{p}^{\mathrm{cycl}})^{\flat}$ and quotient out by $\underline{\mathbb{Z}_{p}}^{\times}$ (the underline notation will be explained later – for now we think of this as making the group $\mathbb{Z}_{p}^{\times}$ into a perfectoid space) – this is the diamond $\mathrm{Spd}(\mathbb{Q}_{p})$. More generally, if $X$ is an adic space over $\mathrm{Spa}(\mathbb{Z}_{p})$ satisfying certain conditions (“analytic”), we can define the diamond $X^{\diamond}$ to be such that $X^{\diamond}(S)$, for $S$ a perfectoid space over $\mathrm{Spa}(\mathbb{F}_{p})$, is the set of isomorphism classes of pairs $(S^{\#},S^{\#}\to X)$, $S^{\#}$ being the untilt of $S$. If $X=\mathrm{Spa}(R,R^{+})$, we also use $\mathrm{Spd}(R)$ to denote $X^{\diamond}$. Note that if $X$ is already perfectoid, $X^{\diamond}$ is just the same thing as the tilt $X^{\flat}$.

Now recall that $Y_{S}$ was defined to be the locus in $W_{\mathcal{O}_{E}}(S)$ where the uniformizer $\varpi$ of $S$ and the uniformizer $\pi$ of $E$ were invertible. We actually have that $Y_{S}^{\diamond}=S\times \mathrm{Spd}(E)$, and, for the Fargues-Fontaine curve $X_{S}$, we have that $X_{S}^{\diamond}=S\times \mathrm{Spd}(E)/(\mathrm{Frob}^{\mathbb{Z}}\times\mathrm{id})$.

Our generalization of the statement that the points of $X_{S}$ parametrize untilts of $S$ is now as follows. There exists a three-way bijection between sections of the map $Y^{\diamond}\to S$, maps $S\to\mathrm{Spd}(E)$, and untilts $S^{\#}$ over $E$ of $S$. Given such an untilt $S^{\#}$, this defines a closed Cartier divisor on $Y_{S}$, which in turn gives rise to a closed Cartier divisor on $X_{S}$. By the bijection mentioned earlier, these closed Cartier divisors on $X$ will be parametrized by maps $S\to \mathrm{Spd}(E)/\mathrm{Frob}^{\mathbb{Z}}$.

The closed Cartier divisors that arise in this way will be referred to as closed Cartier divisors of degree $1$. We have seen that they are parametrized by the following moduli space we denote by $\mathrm{Div}^{1}$ (this will also become important later on):

$\mathrm{Div}^{1}=\mathrm{Spd}(E)/\mathrm{Frob}^{\mathbb{Z}}$

Now that we have discussed the Fargues-Fontaine curve $X_{S}$ and some of its properties, we can define $\mathrm{Bun}_{G}$ as the stack that assigns to any perfectoid space $S$ over $\overline{\mathbb{F}}_{q}$ the groupoid of $G$-bundles on $X_{S}$.

When $G=\mathrm{GL}_{n}$, our $G$-bundles are just vector bundles. In this case we shall also denote $\mathrm{Bun}_{\mathrm{GL}_{n}}$ by $\mathrm{Bun}_{n}$.

### II. Vector Bundles on the Fargues-Fontaine Curve

Let us now try to understand a little bit more about vector bundles on the Fargues-Fontaine curve. They turn out to be related to another important thing in arithmetic geometry – isocrystals – and this will allow us to classify them completely.

Let $\breve{E}$ be the completion of the maximal unramified extension of $E$. Letting $\kappa$ denote the residue field of $\mathcal{O}_{E}$, $\breve{E}$ may also be expressed as the fraction field of $W(\kappa)$. It is equipped with a Frobenius lift $\mathrm{Frob}$. An isocrystal $V$ over $\breve{E}$ is defined to be a vector space over $\breve{E}$ equipped with a $\mathrm{Frob}$-semilinear automorphism.

Given an isocrystal $V$ over $\breve{E}$, we can obtain a vector bundle $\mathcal{E}$ on the Fargues-Fontaine curve $X_{S}$ by defining $\mathcal{E}=(V\times Y_{S})/\mathrm{Frob}^{\mathbb{Z}}$. It turns out all the vector bundles over $X_{S}$ can be obtained in this way!

Now the advantage of relating vector bundles on the Fargues-Fontaine curve to isocrystals is that isocrystals are completely classified via the Dieudonne-Manin classification. This says that the category of isocrystals over $\breve{E}$ is semi-simple (so every object is a direct sum of the simple objects), and the form of the simple objects are completely determined by two integers which are coprime, the rank (i.e. the dimension as an $\breve{F}$-vector space) $n$ which must be positive, and the degree (which determines the form of the $\mathrm{Frob}$-semilinear automorphism) $d$. Since these two integers are coprime and one is positive, there is really only one number that completely determines a simple $\breve{E}$-isocrystal – its slope, defined to be the rational number $d/r$. Therefore we shall also often denote a simple $\breve{E}$-isocrystal as $V(d/n)$. Since isocrystals over $\breve{E}$ and vector bundles on the Fargues-Fontaine curve $X_{S}$ are in bijection, if we have a simple $\breve{E}$-isocrystal $V(d/n)$ we shall denote the corresponding vector bundle by $\mathcal{E}(-d/n)$. More generally, an isocrystal is a direct sum of simple isocrystals and they can have different slopes. If an isocrystal only has one slope, we say that it is semistable (or basic). We use the same terminology for the corresponding vector bundle.

More generally, for more general reductive groups $G$, we have a notion of $G$-isocrystals; this can also be thought of functors from the category of representations of $G$ over $E$ to the category of isocrystals over $\breve{E}$. These are in correspondence with $G$-bundles over the Fargues-Fontaine curve. There is also a notion of semistable or basic for $G$-isocrystals, although its definition involves the Newton invariant (one of two important invariants of a $G$-isocrystal, the other being the Kottwitz invariant).

The set of $G$-isocrystals is denoted $B(G)$ and is also called the Kottwitz set. This set is in fact also in bijection with the equivalence classes in $G(\breve{E})$ under “Frobenius-twisted conjugacy”, i.e. the equivalence relation $g\sim \varphi(y)gy^{-1}$. Given an element $b$ of $B(G)$, we can define the algebraic group $G_{b}$ to be such that the elements of $G_{b}(F)$ are the elements $g$ of $G(\breve{F})$ satisfying the condition $\varphi(g)=bgb^{-1}$. If $b=1$, then $G_{b}=G$.

The groups $G_{b}$ are inner forms of $G$ (see also Reductive Groups Part II: Over More General Fields). More precisely, the $G_{b}$ are the extended pure inner forms of $G$, which are all the inner forms of $G$ if the center of $G$ is connected. Groups which are inner forms of each other are in some way closely related under the local Langlands correspondence – for instance, they have the same Langlands dual group. It has been proposed that these inner forms should really be studied “together” in some way, and we shall see that the use of $\mathrm{Bun}_{G}$ to formulate the local Langlands correspondence provides a realization of this approach.

Let us mention one more important part of arithmetic geometry that vector bundles on the Fargues-Fontaine curve are related to, namely p-divisible groups. A p-divisible group (also known as a Barsotti-Tate group) $G$ is an direct limit of group schemes

$\displaystyle G=\varinjlim_{n} G_{n}=(G_{1}\to G_{2}\to\ldots)$

such that $G_{n}$ is a finite flat commutative group scheme which is $p^{n}$-torsion of order $p^{nh}$ and such that the inclusion $G_{n}\to G_{n+1}$ induces an isomorphism of $G_{n}$ with $G_{n+1}[p^{n}]$ (the kernel of the multiplication by $p^{n}$ map in $G_{n+1}$). The number $h$ is called the height of the p-divisible group.

An example of a p-divisible group is given by $\mu_{\infty}=\varinjlim_{n} \mu_{p^{n}}$. This is a p-divisible group of height $1$. Given an abelian variety of dimension $g$, we can also form a p-divisible group of height $2g$ by taking the direct limit of its $p$-torsion.

We can also obtain p-divisible groups from formal group laws (see also The Lubin-Tate Formal Group Law) by taking the direct limit of its $p^{n}$-torsion. In this case we can then define the dimension of such a p-divisible group to be the dimension of the formal group law it was obtained from. More generally, for any p-divisible group over a complete Noetherian local ring of residue characteristic $p$, the connected component of its identity always comes from a formal group law in this way, and so we can define the dimension of the p-divisible group to be the dimension of this connected component.

Now it turns out p-divisible groups can also be classified by a single number, the slope, defined to be the dimension divided by the height. If the terminology appears suggestive of the classification of isocrystals and vector bundles on the Fargues-Fontaine curve, that’s because it is! Isocrystals (and therefore vector bundles on the Fargues-Fontaine curve) and p-divisible groups are in bijection with each other, at least in the case where the slope is between $0$ and $1$. This is quite important because the cohomology of deformation spaces of p-divisible groups (such as that obtained from the Lubin-Tate group law) have been used to prove the local Langlands correspondence before the work of Fargues and Scholze! We will be revisiting this later.

### III. The Geometry of $\mathrm{Bun}_{G}$

Let us now discuss more about the geometry of $\mathrm{Bun}_{n}$. It happens that $\mathrm{Bun}_{G}$ is a small v-sheaf. A v-sheaf is a sheaf on the category of perfectoid spaces over $\overline{\mathbb{F}}_{q}$ equipped with the v-topology, where the covers of $X$ are any maps $X_{i}\to X$ such that for any quasicompact $U\subset X$ there are finitely many $U_{i}$ which cover $U$. A v-sheaf is small if it admits a surjective map from a perfectoid space. In particular being a small v-sheaf implies that $\mathrm{Bun}_{G}$ has an underlying topological space $\vert \mathrm{Bun}_{G}\vert$. The points of this topological space are going to be in bijection with the elements of the Kottwitz set $B(G)$.

If $G$ is a locally profinite topological group, we define $\underline{G}$ to be the functor from perfectoid spaces over $\mathbb{F}_{q}$ which sends a perfectoid space $S$ over $\mathbb{F}_{q}$ to the set $\mathrm{Hom}_{\mathrm{top}}(\vert S\vert,\vert G\vert)$. We let $[\ast/\underline{G}]$ be the classifying stack of $G$-bundles; this means that we can obtain any $\underline{G}$-bundle on any perfectoid space $S$ over $\mathbb{F}_{q}$ by pulling back a universal $\underline{G}$-bundle on $[\ast/\underline{G}]$.

We write $\vert \mathrm{Bun}_{G}^{\mathrm{ss}}\vert$ for the locus in $\vert \mathrm{Bun}_{G}\vert$ corresponding to the $G$-isocrystals that are semistable. We let $\mathrm{Bun}_{G}^{ss}$ the substack of $\mathrm{Bun}_{G}$ whose underlying topological space is $\vert\mathrm{Bun}_{G}^{\mathrm{ss}}\vert$. It turns out that we have a decomposition

$\displaystyle \mathrm{Bun}_{G}^{\mathrm{ss}}\cong\coprod_{b\in B(G)_{\mathrm{basic}}}[\ast/\underline{G_{b}(E)}]$

More generally, even is $b$ is not basic, we have an inclusion

$\displaystyle j:[\ast/\underline{G_{b}(E)}]\hookrightarrow \mathrm{Bun}_{G}$

Let us now look at some more of the properties of $\mathrm{Bun}_{G}$. In particular, $\mathrm{Bun}_{G}$ satisfies the conditions for an analogue of an Artin stack (see also Algebraic Spaces and Stacks) but with locally spatial diamonds instead of algebraic spaces and schemes.

A diamond $X$ is called a spatial diamond if it is quasicompact quasiseparated, and its underlying topological space $\vert X\vert$ is generated by $\vert U\vert$, where $U$ runs over all sub-diamonds of $X$ which are quasicompact. A diamond is called a locally spatial diamond if it admits an open cover by spatial diamonds.

Now we recall from Algebraic Spaces and Stacks that to be an Artin stack, a stack must have a diagonal that is representable in algebraic spaces, and it has charts which are representable by schemes. It turns out $\mathrm{Bun}_{G}$ satisfies analogous properties – its diagonal is representable in locally spatial diamonds, and it has charts which are representable by locally spatial diamonds.

We can now define a derived category (see also Perverse Sheaves and the Geometric Satake Equivalence) of sheaves on the v-site of $\mathrm{Bun}_{G}$ with coefficients in some $\mathbb{Z}_{\ell}$-algebra $\Lambda$. If $\Lambda$ is torsion (e.g. $\mathbb{F}_{\ell}$ or $\mathbb{Z}/\ell^{n}\mathbb{Z}$), this can be the category $D_{\mathrm{et}}(\mathrm{Bun}_{G},\Lambda)$, which is the subcategory of $D(\mathrm{Bun}_{G,v},\Lambda)$ whose pullback to any strictly disconnected perfectoid space $S$ lands in $D(S_{\mathrm{et}},\Lambda)$ (here the subscripts $v$ and $\mathrm{et}$ denote the v-site and the etale site respectively). If $\Lambda$ is not torsion (e.g. $\mathbb{Z}_{\ell}$ or $\mathbb{Q}_{\ell}$) one needs the notion of solid modules (which was further developed in the work of Clausen and Scholze on condensed mathematics) to construct the right derived category.

If $X$ is a spatial diamond and $j:U\to X$ is a pro-etale map expressible as a limit of etale maps $j_{i}U_{i}\to X$, we can construct the sheaf $\widehat{\mathbb{Z}}[U]$ as the limit $\varprojlim_{i}j_{i!}\widehat{\mathbb{Z}}$. We say that a sheaf $\mathcal{F}$ on $X$ is solid if $\mathcal{F}(U)$ is isomorphic to $\mathrm{Hom}(\widehat{\mathbb{Z}}[U],\mathcal{F})$. We can extend this to small v-stacks – if $X$ is a small v-stack and $\mathrm{F}$ is a v-sheaf on $X$, we say that $\mathcal{F}$ is solid if for every map from a spatial diamond $Y$ to $X$ the pullback of $\mathcal{F}$ to $Y$ coincides with the pullback of a solid sheaf from the quasi-pro-etale site of $Y$. We denote by $D_{\blacksquare}(X,\widehat{\mathbb{Z}})$ the subcategory of $D(X_{v},\widehat{\mathbb{Z}})$ whose objects have cohomology sheaves which are solid. Now if we have a solid $\widehat{\mathbb{Z}}$-algebra $\Lambda$, we can consider $D(X_{v},\Lambda)$ inside $D(X_{v},\widehat{\mathbb{Z}})$, and we denote by $D_{\blacksquare}(X,\Lambda)$ the subcategory of objects of $D(X_{v},\Lambda)$ whose image in $D(X_{v},\widehat{\mathbb{Z}})$ is solid.

This category $D_{\blacksquare}(X,\Lambda)$ is still too big for our purposes. Therefore we cut out a subcategory $D_{\mathrm{lis}}(X,\widehat{\mathbb{Z}})$ as follows. If we have a map of v-stacks $f:X\to Y$, we have a pullback map $f^{*}:D_{\blacksquare}(Y,\Lambda)\to D_{\blacksquare}(X,\Lambda)$. This pullback map has a left-adjoint $f_{\natural}:D_{\blacksquare}(X,\Lambda)\to D_{\blacksquare}(Y,\Lambda)$. We define $D_{\mathrm{lis}}(X,\Lambda)$ to be the smallest triangulated subcategory stable under direct sums that contain $f_{\natural}\Lambda$, for all $f:X\to Y$ which are separated, representable by locally spatial diamonds, and $\ell$-cohomologically smooth. If $\Lambda$ is torsion, then $D_{\mathrm{lis}}(X,\Lambda)$ coincides with $D_{\mathrm{et}}(X,\Lambda)$.

Let $D(G_{b}(E),\Lambda)$ be the derived category of smooth representations of the group $G_{b}(E)$ over $\Lambda$. We have

$\displaystyle D_{\mathrm{lis}}(\ast/\underline{G_{b}(E)},\Lambda)\cong D(G_{b}(E),\Lambda)$

Now taking the pushforward of this derived category of sheaves through the inclusion $j$, and using the isomorphism above, we get

$\displaystyle j_{!}:D(G_{b}(E),\Lambda)\to D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$

Now we can see that this derived category $D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$ of sheaves on $\mathrm{Bun}_{G}$ encodes the representation theory of $G$, which is one side of the local Langlands correspondence, but more than that, it encodes the representation theory of all the extended pure inner forms of $G$ altogether.

The properties of $\mathrm{Bun}_{G}$ mentioned earlier, in particular its charts which are representable by locally spatial diamonds, allow us to define properties of objects in $D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$ which translate into properties of interest in $D(G_{b}(E),\Lambda)$. For example, we have a notion of $D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$ being compactly generated, and this translates into a notion of compactness for $D(G_{b}(E),\Lambda)$. We also have a notion of Bernstein-Zelevinsky duality for $D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$, which translates into Bernstein-Zelevinsky duality for $D(G_{b}(E),\Lambda)$, and finally, we have a notion of universal local acyclicity in $D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$, which translates into being admissible for $D(G_{b}(E),\Lambda)$.

### IV. The Hecke Correspondence and Excursion Operators

Now let us look at how the strategy in The Global Langlands Correspondence for Function Fields over a Finite Field works for our setup. We will be working in the “geometric” setting (i.e. sheaves or complexes of sheaves instead of functions) mentioned at the end of that post, so there will be some differences from the work of Lafforgue that we discussed there, although the motivations and main ideas (e.g. excursion operators) will be somewhat similar.

Just like in The Global Langlands Correspondence for Function Fields over a Finite Field, we will have a Hecke stack $\mathrm{Hck}_{G}$ that parametrizes modifications of $G$-bundles over the Fargues-Fontaine curve. This means that $\mathrm{Hck}_{G}(S)$ is the groupoid of triples $(\mathcal{E},\mathcal{E}',\phi)$ where $\mathcal{E}$ and $\mathcal{E}'$ are $G$-bundles over $X_{S}$ and $\phi_{D_{S}}:\mathcal{E}\vert_{X_{S}\setminus D_{S}}\xrightarrow{\sim}\mathcal{E}'\vert_{X_{S}\setminus D_{S}}$ is an isomorphism of vector bundles meromorphic on some degree $1$ Cartier divisor $D_{S}$ on $X_{S}$ (which is part of the data of the modification). Note that we have maps $h^{\leftarrow}:\mathrm{Hck}_{G}\to\mathrm{Bun}_{G}$ and $h^{\rightarrow}:\mathrm{Hck}_{G}\to\mathrm{Bun}_{G}\times\mathrm{Div}^{1}$ which sends the triple $(\mathcal{E},\mathcal{E}'\phi_{D_{S}})$ to $\mathcal{E}$ and $(\mathcal{E}',D_{S})$ respectively.

Now we need to bound the relative position of the modification. Recall that this is encoded via (conjugacy classes of) cocharacters $\mu:\mathbb{G}_{m}\to G$. The way this is done in this case is via the local Hecke stack $\mathcal{H}\mathrm{ck}_{G}$, which parametrizes modifications of $G$-bundles on the completion of $X_{S}$ along $D_{S}$ (compare the moduli stacks denoted $\mathcal{M}_{I}$ inThe Global Langlands Correspondence for Function Fields over a Finite Field). The local Hecke stack admits a stratification into Schubert cells labeled by conjugacy classes of cocharacters $\mu:\mathbb{G}_{m}\to G$. We can now pull back a Schubert cell $\mathcal{H}\mathrm{ck}_{G,\mu}$ to the global Hecke stack $\mathrm{Hck}_{G}$ to get a substack $\mathrm{Hck}_{G,\mu}$ with maps $h^{\leftarrow,\mu}$ and $h^{\rightarrow,\mu}$, and define a Hecke operator as

$\displaystyle Rh_{*}^{\rightarrow,\mu}h^{\leftarrow,\mu *}:D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)\to D_{\mathrm{lis}}(\mathrm{Bun}_{G}\times\mathrm{Div}^{1},\Lambda)$

More generally, to consider compositions of Hecke operators we need to consider modifications at multiple points. For this we will need the geometric Satake equivalence.

Let $S$ be an affinoid perfectoid space over $\mathbb{F}_{q}$. For each $i$ in some indexing set $I$, we let $D_{i}$ be a Cartier divisor on $X_{S}$. Let $B^{+}(S)$ be the completion of $\mathcal{O}_{X_{S}}$ along the union of the $D_{i}$, and let $B(S)$ be the localization of $B$ obtained by inverting the $D_{i}$. For our reductive group $G$, we define the positive loop group $LG^{+}$ to be the functor which sends an affinoid perfectoid space $S$ to $G(B^{+}(S))$, and we define the loop group $LG$ to be the functor which sends $S$ to $G(B(S))$.

We define the Beilinson-Drinfeld Grassmannian $\mathrm{Gr}_{G}^{I}$ to be the quotient $LG^{+}/LG$. We further define the local Hecke stack $\mathcal{H}\mathrm{ck}_{G}^{I}$ to be the quotient $LG\backslash\mathrm{Gr}_{G}^{I}$.

The geometric Satake equivalence tells us that the category $\mathrm{Sat}_{G}^{I}(\Lambda)$ of perverse sheaves on $\mathcal{H}\mathrm{ck}_{G}^{I}$ satisfying certain conditions (quasicompact over $\mathrm{Div}^{1})^{I}$, flat over $\Lambda$, universally locally acyclic) is equivalent to the category of representations of $(\widehat{G}\rtimes W_{E})^{I}$ on finite projective $\Lambda$-modules.

Let $V$ be such a representation of representations of $(\widehat{G}\rtimes W_{E})^{I}$. Let $\mathcal{S}_{V}$ be the corresponding object of $\mathrm{Sat}_{G}^{I}(\Lambda)$. The global Hecke stack $\mathrm{Hck}_{G}^{I}$ has a map $q$ to the local Hecke stack $\mathcal{H}\mathrm{ck}_{G}^{I}$. It also has maps $h^{\leftarrow}$ to $h^{\rightarrow}$ to $\mathrm{Bun}_{G}$ and $\mathrm{Bun}_{G}\times(\mathrm{Div}^{1})^{I}$ respectively. We can now define the Hecke operator $T_{V}$ as follows:

$\displaystyle T_{V}=Rh_{*}^{\rightarrow}(h^{\leftarrow *}\otimes_{\Lambda}^{\mathbb{L}}q^{*}\mathcal{S}_{V}):D_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)\to D_{\mathrm{lis}}(\mathrm{Bun}_{G}\times(\mathrm{Div}^{1})^{I},\Lambda)$

Once we have the Hecke operators, we can then consider excursion operators and apply the strategy of Lafforgue discussed in The Global Langlands Correspondence for Function Fields over a Finite Field. We set $\Lambda$ to be $\overline{\mathbb{Q}}_{\ell}$. Let $(I,V,\alpha,\beta,(\gamma_{i})_{i\in I})$ be an excursion datum, i.e. $I$ is a finite set, $V$ is a representation of $(\widehat{G}\rtimes Q)^{I}$, $\alpha:1\to V$, $\beta:V \to 1$, and $\gamma_{i}\in W_{E}$ for all $i\in I$. An excursion operator is the following composition:

$\displaystyle A=T_{1}(A)\xrightarrow{\alpha} T_{V}(A)\xrightarrow{(\gamma_{i})_{i\in I}} T_{V}(A)\xrightarrow{\beta} T_{1}(V)=A$

Now this composition turns out to be the same as multiplication by the scalar determined by the following composition:

$\displaystyle \overline{\mathbb{Q}}_{\ell}\to V\xrightarrow{\varphi(\gamma_{i})_{i\in I}} V\to \overline{\mathbb{Q}}_{\ell}$

And the $\varphi$ that appears here is precisely the L-parameter that we are looking for. This therefore gives us the “automorphic to Galois” direction of the local Langlands correspondence.

### V. Relation to Local Class Field Theory

It is interesting to look at how this all works in the case $G=\mathrm{GL}_{1}$, i.e. local class field theory. There is historical precedent for this in the work of Pierre Deligne for what we might now call the $\mathrm{GL}_{1}$ case of the (geometric) global Langlands correspondence for function fields over a finite field, but which might also be called geometric class field theory.

Let us go back to the setting in The Global Langlands Correspondence for Function Fields over a Finite Field, where we are working over a function field of some curve $X$ over the finite field $\mathbb{F}_{q}$. Since we are considering $G=\mathrm{GL}_{1}$, our $\mathrm{Bun}_{G}$ in this case will be the Picard group $\mathrm{Pic}_{X}$, which parametrizes line bundles on $X$. The statement of the geometric Langlands correspondence in this case is that there is an equivalence of character sheaves on $\mathrm{Pic}_{X}$ (see the discussion of Grothendieck’s sheaves to functions dictionary at the end of The Global Langlands Correspondence for Function Fields over a Finite Field) and $\overline{\mathbb{Z}}_{\ell}$-local systems of rank $1$ on $X$ (these are the same as one-dimensional representations of $\pi_{1}(X)$).

We have an Abel-Jacobi map $\mathrm{AJ}: X\to \mathrm{Pic}_{X}$, sending a point $x$ of $X$ to the corresponding divisor $x$ in $\mathrm{Pic}_{X}$. More generally we can define $\mathrm{AJ}^{d}:X^{(d)}\to\mathrm{Pic}_{X}^{d}$, where $X^{(d)}$ is the quotient of $X^{d}$ by the symmetric group on its factors, and $\mathrm{Pic}_{X}^{d}$ is the degree $d$ part of $\mathrm{Pic}_{X}$.

Now suppose we have a rank $1$ $\overline{\mathbb{Z}}_{\ell}$-local system on $X$, which we shall denote by $\mathcal{F}$. We can form a local system $\mathcal{F}^{\boxtimes d}$ on $X^{d}$. We can push this forward to $X^{(d)}$ and get a sheaf $\mathcal{F}^{(d)}$ on $X^{(d)}$. What we hope for is that this sheaf $\mathcal{F}^{(d)}$ is the pullback of the character sheaf on $\mathrm{Pic}_{X}^{d}$ that we are looking for via $\mathrm{AJ}^{(d)}$. This is in fact what happens, and what makes this possible is that the fibers of $\mathrm{AJ}^{(d)}$ are simply connected for $d>2g-2$, by the Riemann-Roch theorem. So for this $d$, by taking fundamental groups of the fiber sequence, we have that $\pi_{1}(X^{(d)})\cong\pi_{1}(\mathrm{Pic}_{X}^{d})$. So representations of $\pi_{1}(X^{(d)})$ give rise to representations of $\pi_{1}(\mathrm{Pic}_{X}^{d})$, and since representations of the fundamental group are the same as local systems, we see that there must be a local system on $\mathrm{Pic}_{X}^{d}$, and furthermore the sheaf $\mathcal{F}^{(d)}$ is the pullback of this local system. There is then an inductive method to extend this to $d\leq 2g-2$, and we can check that the local system is a character sheaf.

Now let us go back to our case of interest, the local Langlands correspondence. Instead of the curve $X$ we will use $\mathrm{Div}^{1}$, the moduli of degree $1$ Cartier divisors. It will be useful to have an alternate description of $\mathrm{Div}^{1}$ in terms of Banach-Colmez spaces.

For any perfectoid space $T$ over $S$ and any vector bundle $\mathcal{E}$ over $X_{S}$, the Banach-Colmez space $\mathcal{BC}(\mathcal{E})$ is the locally spatial diamond such that $\mathcal{BC}(\mathcal{E})(S)=H^{0}(X_{T},\mathcal{E}\vert_{X_{T}})$. We define $\mathcal{BC}(\mathcal{E})\setminus \lbrace 0\rbrace$ to be such that $\mathcal{BC}(\mathcal{E})\setminus \lbrace 0\rbrace (S)$ are the sections in $H^{0}(X_{T},\mathcal{E}\vert_{X_{T}})$ which are nonzero fiberwise on $S$.

There is a map from $\mathcal{BC}(\mathcal{O}(1))\setminus \lbrace 0\rbrace$ to $\mathrm{Div}^{1}$ which sends a section $f$ to $V(f)$, which in turn induces an isomorphism $(\mathcal{BC}(\mathcal{O}(1))\setminus \lbrace 0\rbrace)/\underline{E^{\times}}\cong \mathrm{Div}^{1}$. A more explicit description of this map is given by Lubin-Tate theory (see also The Lubin-Tate Formal Group Law). After choosing a coordinate, the Lubin-Tate formal group law $\mathcal{G}$ with an action of $\mathcal{O}_{E}$, over $\mathcal{O}_{E}$, is isomorphic to $\mathrm{Spf}(\mathcal{O}_{E}[[x]])$. We can form the universal cover $\widetilde{\mathcal{G}}$ which is isomorphic to $\mathrm{Spf}(\mathcal{O}_{E}[[x^{1/q^{\infty}}]])$. Now let $S=\mathrm{Spa}(R,R^{+})$ be a perfectoid space with tilt $S^{\#}=\mathrm{Spa}(R^{\#},R^{\#+})$. We have $\widetilde{\mathcal{G}}(R^{\#+})=R^{\circ\circ}$, where $R^{\circ\circ}$ is the set of topologically nilpotent elements in $R$, and the map which sends a topologically nilpotent element $x$ to the power series $\sum_{i}\pi^{i}[x^{q^{-i}}]$ gives a map to $H^{0}(Y_{S},\mathcal{O}(1))$, which upon quotienting out by the action of Frobenius gives an isomorphism between $\widetilde{\mathcal{G}}(R^{\#+})$ and $H^{0}(X_{S},\mathcal{O}(1))$.

What this tells us is that $H^{0}(X_{S},\mathcal{O}(1))\cong \mathrm{Spd}(\mathbb{F}[[x^{1/p^{\infty}}]])$. Defining $E_{\infty}$ to be the completion of the union over all $n$ of the $\pi^{n}$-torsion points of $\mathcal{G}$ in $\overline{E}$, we have that $H^{0}(X_{S},\mathcal{O}(1))\cong \mathrm{Spd}(E_{\infty})$. This is an $\underline{\mathcal{O}_{E}^{\times}}$-torsor over $\mathrm{Spd}(E)$, and then quotienting out by the action of Frobenius we obtain our map to $\mathrm{Div}^{1}$.

More generally, we have an isomorphism $(\mathcal{BC}(\mathcal{O}(d))\setminus\lbrace 0\rbrace)/\underline{E^{\times}}\cong \mathrm{Div}^{d}$, where $\mathrm{Div}^{d}$ parametrized degree $d$ relative Cartier divisors on $X_{S,E}$.

Now that we have our description of $\mathrm{Div}^{1}$ (and more generally $\mathrm{Div}^{d}$) in terms of Banach-Colmez spaces, let us now see how we can translate the strategy of Deligne to the local case. Once again we have an Abel-Jacobi map

$\displaystyle \mathrm{AJ}^{d}:\mathcal{BC}(\mathcal{O}(d))\setminus\lbrace 0\rbrace\to\mathrm{Pic}^{d}$

Given a local system on $\mathcal{BC}(\mathcal{O}(d))$, we want to have a character sheaf on $\mathrm{Pic}^{d}$ whose pullback to $\mathcal{BC}(\mathcal{O}(d))$ is precisely this local system. Again what our strategy hinges will be whether $\mathcal{BC}(\mathcal{O}(d))\setminus\lbrace 0\rbrace$ will be simply connected. And in fact this is true for $d\geq 3$, and by a result called Drinfeld’s lemma for diamonds this will actually be enough to prove the local Langlands correspondence for $\mathrm{GL}_{1}$ (i.e. it is not needed for $d<3$ – in fact this is false for $d=1$!). The fact that $\mathcal{BC}(\mathcal{O}(d))\setminus\lbrace 0\rbrace$ is simply connected for $d\geq 3$ is a result of Fargues, and, at least for the characteristic $p$ case, follows from expressing $\mathcal{BC}(\mathcal{O}(d))\setminus\lbrace 0\rbrace=\mathrm{Spa}(\mathbb{F}_{q}[[x_{1}^{1/p^{\infty}},\ldots,x_{d}^{1/p^{\infty}}]])\setminus V(x_{1},\ldots x_{d})$, whose category of etale covers is the same as that of $\mathrm{Spa}(\mathbb{F}_{q}[[x_{1},\ldots,x_{d}]])\setminus V(x_{1},\ldots x_{d})$. Then Zariski-Nagata purity allows one to reduce this to showing that $\mathrm{Spa}(\mathbb{F}_{q}[[x_{1},\ldots,x_{d}]])$ is simply connected, which it is by Hensel’s lemma.

### VI. The Cohomology of Local Shimura Varieties

Many years before the work of Fargues and Scholze, the $\mathrm{GL}_{n}$ case of the local Langlands correspondence (see also The Local Langlands Correspondence for General Linear Groups) was originally proven using the cohomology of the Lubin-Tate tower (which we shall denote by $\mathcal{M}_{\infty}$) which parametrizes deformations of the Lubin-Tate formal group law (see also The Lubin-Tate Formal Group Law) with level structure, together with the cohomology of Shimura varieties. Let us now investigate how the cohomology of the Lubin-Tate tower can be related to what we have just discussed.

It turns out that because of the relationship between Lubin-Tate formal group laws, p-divisible groups, and vector bundles on the Fargues-Fontaine curve, the Lubin-Tate tower is also a moduli space of modifications of vector bundles on the Fargues-Fontaine curve, but of a very specific kind! Namely, it parametrizes modifications where we fix the two vector bundles, and furthermore one has to be the trivial bundle $\mathcal{O}^{n}$ and the other a degree $1$ bundle $\mathcal{O}(1/n)$, and so the only thing that varies is the isomorphism between them (as opposed to the Hecke stack, where the vector bundles can also vary) away from a point. So we see that the Lubin-Tate tower is a part of the Hecke stack (we can think of it as the fiber of the Hecke stack above $(\mathcal{E}_{1},\mathcal{E}_{b})\in \mathrm{Bun}_{G}\times\mathrm{Bun}_{G}$).

More generally, the Lubin-Tate tower is a special case of a local Shimura variety at infinite level, which is itself related to a special case of a moduli stack of local shtukas. These parametrize modifications of $G$-bundles $\mathcal{E}_{1}$ and $\mathcal{E}_{b}$, which are bounded by some cocharacter $\mu:\mathbb{G}_{m}\to G(E)$. This moduli stack of local shtukas, denoted $\mathrm{Sht}_{G,b,\mu,\infty}$, is an inverse limit of locally spatial diamonds $\mathrm{Sht}_{G,b,\mu,K}$ with “level structure” given by some compact open subgroup $K$ of $G(E)$. In the case where the cocharacter $\mu$ is miniscule, the data $(G,b,\mu)$ is called a local Shimura datum, and we define the local Shimura variety at infinite level, denoted $\mathcal{M}_{G,b,\mu,\infty}$, to be such that $\mathrm{Sht}_{G,b,\mu,\infty}=\mathcal{M}_{G,b,\mu,\infty}^{\diamond}$. It is similarly a limit of local Shimura varieties at finite level $K$, denoted $\mathcal{M}_{G,b,\mu,K}$, and for each $K$ we have $\mathrm{Sht}_{G,b,\mu,K}=\mathcal{M}_{G,b,\mu,K}^{\diamond}$.

Let us now see how the cohomology of the moduli stack of local shtukas is related to our setup. We will consider the case of finite level, i.e. $\mathrm{Sht}_{G,b,\mu,K}$, since the cohomology at infinite level may be obtained as a limit. Consider the inclusion $j_{1}:[\ast/\underline{G(E)}]\hookrightarrow \mathrm{Bun}_{G}$. Now consider the object $A=j_{1!}\mathrm{c-ind}_{K}^{G(E)}\mathbb{Z}_{\ell}$ of $D_{\mathrm{lis}}(\mathrm{Bun_{G}},\mathbb{Z}_{\ell})$. Now for our cocharacter $\mu:\mathbb{G}_{m}\to G(E)$, we have a Hecke operator $T_{\mu}$, and we apply this Hecke operator to obtain $T_{\mu}(A)$. Now we pull this back through the inclusion $j_{b}:[\ast/\underline{G_{b}(E)}]\hookrightarrow \mathrm{Bun}_{G}$, to get an object $j_{b}^{*}T_{\mu}(A)$ of $D_{\mathrm{lis}}(\ast/\underline{G_{b}(E)},\mathbb{Z}_{\ell})$. We can think of all this happening not on the entire Hecke stack, but only on $\mathrm{Sht}_{G,b,\mu,K}$, since we are specifically only considering this very special kind of modification parametrized by $\mathrm{Sht}_{G,b,\mu,K}$. But the derived pushforward from $D_{\mathrm{lis}}(\mathrm{Sht}_{G,b,\mu,K})$ to a point gives $R\Gamma(\mathrm{Sht}_{G,b,\mu,K},\mathbb{Z}_{\ell})$ (from which we can compute the cohomology).

This relationship between the cohomology of the moduli stack of local shtukas and sheaves on $\mathrm{Bun}_{G}$, as we have just discussed, has been used to obtain new results. For instance, David Hansen, Tasho Kaletha, and Jared Weinstein used this formulation together with the concept of the categorical trace to prove the Kottwitz conjecture.

Let $\rho$ be a smooth irreducible representation of $G_{b}(E)$ over $\overline{\mathbb{Q}}_{\ell}$. We define

$\displaystyle R\Gamma(G,b,\mu)[\rho]=\varinjlim_{K\subset G(E)}R\mathrm{Hom}(R\Gamma_{c}(\mathrm{Sht}_{G,b,\mu,K},\mathcal{S}_{\mu}),\rho)$

Let $S_{\varphi}$ be the centralizer of $\varphi$ in $\widehat{G}$. Given a representation $\pi$ in the L-packet $\Pi_{\varphi}(G)$ and a representation $\rho$ in the L-packet $\Pi_{\varphi}(G_{b})$, the refined local Langlands correspondence gives us a representation $\delta_{\pi,\rho}$ of $S_{\varphi}$. We let $r_{\mu}$ be the extension of the highest-weight representation of $\widehat{G}$ to ${}^{L}G$. The Kottwitz conjecture states that

$\displaystyle R\Gamma(G,b,\mu)[\rho]=\sum_{\pi\in\Pi_{\varphi}(G)}\pi\boxtimes\mathrm{Hom}_{S_{\varphi}}(\delta_{\pi,\rho},r_{\mu}\circ \varphi)$

The approach of Hansen, Kaletha, and Weinstein involve first using a generalized Jacquet-Langlands transfer operator $T_{b,\mu}^{G\to G_{b}}$. We define the regular semisimple elements in $G$ to be the semisimple elements whose connected centralizer is a maximal torus, and we define the strongly regular semisimple elements to be the regular semisimple elements whose centralizer is connected. We denote their corresponding open subvarieties in $G$ by $G_{\mathrm{rs}}$ and $G_{\mathrm{rs}}$ respectively. The generalized Jacquet-Langlands transfer operator $T_{b,\mu}^{G\to G_{b}}: C(G(E)_{\mathrm{sr}}\sslash G(E))\to C(G_{b}(E)_{\mathrm{sr}}\sslash G(E))$ is defined to be

$\displaystyle [T_{b,\mu}^{G\to G_{b}}f](g')=\sum_{(g,g',\lambda)\in\mathrm{Rel}_{b}}f(g)\dim r_{\mu}[\lambda]$

Here the set $\mathrm{Rel_{b}}$ is the set of all triples $(g,g',\lambda)$ where $g\in G(E)$, $g'\in G_{b}(E)$, and $\lambda$ is a certain specially defined element of $X_{*}(T)$ ($T$ being the centralizer of $g$ in $G$) that depends on $g$ and $g'$. When applied to the Harish-Chandra character $\Theta_{\rho}$, we have

$\displaystyle [T_{b,\mu}^{G\to G_{b}}\Theta_{\rho}](g)=\sum_{\pi\in\Pi_{\varphi}(G)}\dim \mathrm{Hom}_{S_{\varphi}}(\delta_{\pi,\rho},r_{\mu})\Theta_{\pi}(g)$

Next we have to relate this to the cohomology of the moduli stack of local shtukas. We first need the language of distributions. We define

$\mathrm{Dist}(G(E),\Lambda)^{G(E)}:=\mathrm{Hom}_{G(F)}(C_{c}(G(E),\Lambda)\otimes \mathrm{Haar}(G,\Lambda),\Lambda$

To any object $A$ of $D(G(E),\Lambda)$, we can associate an object $\mathrm{tr.dist}(A)$ of $\mathrm{Dist}(G(E),\Lambda)^{G(E)}$. We also have “elliptic” versions of these constructions, i.e. an object $\mathrm{tr.dist}_{\mathrm{ell}}(A)$ of the category $\mathrm{Dist}_{\mathrm{ell}}(G(E),\Lambda)^{G(E)}$. Now we can define the action of the generalized Jacquet-Langlands transfer operator on $\mathrm{Dist}_{\mathrm{ell}}(G(E),\Lambda)^{G(E)}$. The hope will be that we will have the following equality:

$\displaystyle T_{b,\mu}^{G\to G_{b}}\mathrm{tr.dist}_{\mathrm{ell}}\rho=\mathrm{tr.dist}_{\mathrm{ell}}R\Gamma(G,b,\mu)[\rho]$

Proving this equality is where the geometry of $\mathrm{Bun}_{G}$ (and the Hecke stack) and the trace formula come into play. The action of the generalized Jacquet-Langlands transfer operator $\displaystyle T_{b,\mu}^{G\to G_{b}}$ on $\mathrm{tr.dist}_{\mathrm{ell}}\rho$ can be described in a similar way to a Hecke operator where we pull back to the moduli of local Shtukas, multiply by a kernel function, and then push forward.

On the other side, one needs to compute $\mathrm{tr.dist}_{\mathrm{ell}}R\Gamma(G,b,\mu)[\rho]$. Here we use that $R\Gamma(G,b,\mu)[\rho]=h_{\rightarrow *}'j^{*}(q^{*}\mathcal{S}_{\mu}\otimes h_{\leftarrow}^{*}i_{b *}\rho)$. This is a version of the expression of the cohomology of the moduli stack of local shtukas that we previously discussed where $q^{*}\mathcal{S}_{\mu}$ is the pullback to the Hecke stack of the sheaf corresponding to $\mu$ provided by the geometric Satake equivalence and before pushing forward via $h_{\rightarrow}$ we are pulling back to the degree $1$ part of the Hecke stack, which is why we have $j^{*}$ (the embedding of this degree $1$ part) and $h_{\rightarrow}'$ denotes that we are pushing forward from this degree $1$ part.

Hansen, Kaletha, and Weinstein then apply a categorical version of the Lefschetz-Verdier trace formula (using a framework developed by Qing Lu and Weizhe Zheng) to be able to relate $\mathrm{tr.dist}_{\mathrm{ell}}R\Gamma(G,b,\mu)[\rho]=\mathrm{tr.dist}_{\mathrm{ell}}h_{\rightarrow *}'j^{*}(q^{*}\mathcal{S}_{\mu}\otimes h_{\leftarrow}^{*}i_{b *}\rho)$ to $\displaystyle T_{b,\mu}^{G\to G_{b}}\mathrm{tr.dist}_{\mathrm{ell}}\rho$.

Let us discuss briefly the setting of this categorical trace. We consider a category $\mathrm{CoCorr}$ whose objects are pairs $(X,A)$ where $X$ is an Artin v-stack over $\ast$ and $A\in D_{et}(X,\Lambda)$. The morphisms in this category are given by a pair of maps $c_{1},c_{2}:C\to X$ where $c_{2}$ is smooth-locally representable in diamonds, together with a map $u:c_{1}^{*}A\to c_{2}^{!}A$. We also write $c$ for the pair $(c_{1},c_{2})$. Given an endomorphism $f:(X,A)\to (X,A)$ the categorical trace of $f$ is given by $(\mathrm{Fix}(c),\omega)$ where $\mathrm{Fix}(c)$ is the pullback of $c:C\to X\times X$ and $\Delta_{X}: X\to X\times X$ and $\omega\in H^{0}(\mathrm{Fix}(c),K_{X})$ (here $K_{X}$ is the dualizing sheaf, which may obtained as the right-derived pullback of $\Lambda$ via the structure morphism of $X$). In the special case where the correspondence $c$ arises form an automorphism $g$ of $X$, and $g^{*}A=A$, then one may think of $\mathrm{Fix}(c)$ as the fixed points of $g$ and the categorical trace gives an element of $\Lambda$ (the local term) for each fixed point.

For Hansen, Kaletha, and Weinstein’s application, they consider $f$ to be the identity. The categorical trace is then given by $(\mathrm{In}(X),\mathrm{cc}_{X}(A))$, where $\mathrm{In}(X)=X\times_{X\times X}X$ is the inertia stack, classifying pairs $(x,g)$ with $g$ an automorphism of $x$, and $\mathrm{cc}_{X}(A)\in H^{0}(\mathrm{In}(X),K_{\mathrm{In}(X)})$ is called the characteristic class.

The idea now is that certain properties of the setting we are considering (such as universal local acyclicity) allow us to identify the trace distribution $\mathrm{tr.dist}_{\mathrm{ell}}h_{\rightarrow *}'j^{*}(q^{*}\mathcal{S}_{\mu}\otimes h_{\leftarrow}^{*}i_{b *}\rho)$ as a characteristic class $\mathrm{cc}_{\mathrm{Bun}_{G}^{1}}(h_{\rightarrow *}'j^{*}(q^{*}\mathcal{S}_{\mu}\otimes h_{\leftarrow}^{*}i_{b *}\rho))$. From there we can use properties of the abstract theory to relate it to $\displaystyle T_{b,\mu}^{G\to G_{b}}\mathrm{tr.dist}_{\mathrm{ell}}\rho$ (for instance, we can use a Kunneth formula for the characteristic class to decouple the parts involving $\rho$ and $\mathcal{S}_{\mu}$, and relate the former to pulling back to the moduli stack of local shtukas, and relate the part involving the latter to multiplication by the kernel function).

### VII. The Spectral Action

We have seen that the machinery of excursion operators gives us the automorphic to Galois direction of the local Langlands correspondence. We now describe one possible approach to obtain the other (Galois to automorphic) direction. We are going to use the language of the categorical geometric Langlands correspondence mentioned at the end of in The Global Langlands Correspondence for Function Fields over a Finite Field.

Recall our construction of the moduli stack of local $\ell$-adic Galois representations in Moduli Stacks of Galois Representations. Using the same strategy we can construct a moduli stack of L-parameters, which we shall denote by $Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G}$. This notation comes from the fact that in Fargues and Scholze’s work the L-parameters can be viewed as 1-cocycles.

Let $D(\mathrm{Bun}_{G},\Lambda)^{\omega}$ denote the subcategory of compact objects in $D(\mathrm{Bun}_{G},\Lambda)^{\omega}$. The categorical local Langlands correspondence in this case is the following conjectural equivalence of categories:

$\displaystyle D(\mathrm{Bun}_{G},\Lambda)^{\omega}\cong D_{\mathrm{coh},\mathrm{Nilp}}^{b,\mathrm{qc}}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$

Here the right-hand side is the derived category of bounded complexes on $Z^{1}(W_{E},\widehat{G}$ with quasicompact support, coherent cohomology, and nilpotent singular support. We will leave the definition of these terms to the references, but we will think of $D_{\mathrm{coh},\mathrm{Nilp}}^{b,\mathrm{qc}}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ as being a derived category of coherent sheaves on $Z^{1}(W_{E},\widehat{G})$.

We now outline an approach to proving the categorical local Langlands correspondence. Let $\mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ be the category of perfect complexes on $Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G}$. Then there is an action of $\mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ on $\mathcal{D}_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)^{\omega}$, called the spectral action, such that composing with the map $\mathrm{Rep}(\widehat{G})^{I}\to \mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})^{BW^{I}}$ gives us the action of the Hecke operator.

The idea is that the spectral action gives us a functor from $\mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ to $\mathcal{D}_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)^{\omega}$, sending an object $M$ of $\mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ to the object $M\ast \mathcal{W}_{\psi}$ of $\mathcal{D}_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)^{\omega}$, where $\mathcal{W}_{\psi}$ is the Whittaker sheaf (the sheaf on $\mathrm{Bun}_{G}$ corresponding to the representation $\mathrm{c-Ind}_{U(F)}^{B(F)}\psi$, where $B$ is a Borel subgroup of $G$, $U$ is the unipotent radical of $B$, and $\psi$ is a character of $U$). The hope is then that this functor can be extended from $\mathrm{Perf}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$ to all of $D_{\mathrm{coh},\mathrm{Nilp}}^{b,\mathrm{qc}}(Z^{1}(W_{E},\widehat{G})_{\Lambda}/\widehat{G})$, and that it will provide the desired equivalence of categories.

Now we discuss how this spectral action is constructed. Let us first consider the following more general situation. Let $L$ be a field of characteristic $0$, let $H$ be a split reductive group, and let $W$ be a discrete group. We write $BH$ and $BW$ for their corresponding classifying spaces. Let $\mathcal{C}$ be an idempotent-complete, $L$-linear stable $\infty$-category.

For all $I$, a $W$-equivariant, exact tensor action of $\mathrm{Rep}(H)$ on $\mathcal{C}$ is a functor

$\displaystyle \mathrm{Rep}(H^{I})\times \mathcal{C}\to\mathcal{C}^{BW^{I}}$

natural in $I$, exact as an action of $\mathrm{Rep}(H)$ after forgetting the $BW^{I}$-equivariance, and such that the action of $BW^{I}$ is compatible with the tensor product.

Now what we want to show is that a $W$-equivariant, exact tensor action of $\mathrm{Rep}(H)$ on $\mathcal{C}$ is the same as an $L$-linear action of $\mathrm{Perf}(\mathrm{Maps}(BW,BH))$ on $\mathcal{C}$.

To prove the above statement, Fargues and Scholze use the language of higher category theory. Let $\mathrm{An}$ be the $\infty$-category of anima, which is obtained from simplicial sets by inverting weak equivalences. The specific anima that we are interested in is $BW$, which is obtained by taking the nerve of the category $[\ast/W]$. An important property of $\mathrm{An}$ is that it is freely generated under sifted colimits by the full subcategory of finite sets.

We now define two functors $F_{1}$ and $F_{2}$ from $\mathrm{An}^{\mathrm{op}}$ to $\mathrm{An}$. The functor $F_{1}$ sends a finite set $S$ to the exact $L$-linear actions of $\mathrm{Perf}(\mathrm{Maps}(S,BH))$ on $\mathcal{C}$, which is equivalent to the exact $L$-linear monoidal functors from $\mathrm{Perf}(\mathrm{Maps}(S,BH))$ to $\mathrm{End}(\mathcal{C})$. The functor $F_{2}$ sends a finite set $S$ to the $S$-equivariant exact actions of $\mathrm{Rep}(H)$ on $\mathcal{C}$, which is equivalent to natural transformations from the functor $I\mapsto\mathrm{Hom}(S,I)$ to the functor $I\mapsto\mathrm{Fun}(\mathrm{Rep}(H^{I}),\mathrm{End}(\mathcal{C}))$.

There is a natural transformation from $F_{1}$ to $F_{2}$ that happens to be an isomorphism on finite sets. Now since the category $\mathrm{An}$ is generated by finite sets under sifted colimits, all we need is for the functors $F_{1}$ and $F_{2}$ to preserve sifted colimits.

For $F_{2}$ this follows from the fact that $S\mapsto S^{I}$ preserves sifted colimits. For $F_{1}$, this comes from the fact that $\mathrm{Maps}(S,BH)\cong [\mathrm{Spec}(A)/H^{S'}]$ for some animated $L$-algebra $A$ and some set $S'$, and then looking at the structure of $\mathrm{Perf}([\mathrm{Spec}(A)/H^{S'}])$ and $\mathrm{IndPerf}([\mathrm{Spec}(A)/H^{S'}])$.

Now that we have our abstract theory let us go back to our intended application. Let $W_{E}$ be the Weil group of $F$. It turns out that every L-parameter $\varphi:W_{E}\to \widehat{G}$ factors through a quotient $W_{E}/P$, where $P$ is some open subgroup of the wild inertia. This means that $Z^{1}(W_{E},\widehat{G})$ is the union of all $Z^{1}(W_{E}/P,\widehat{G})$ over all such $P$ (compare also with the construction in Moduli Stacks of Galois Representations), and this also means that we can focus our attention on $Z^{1}(W_{E}/P,\widehat{G})$.

We can actually go further and replace $W_{E}/P$ with its subgroup $W$ generated by the elements $\sigma$ and $\tau$ satisfying $\sigma\tau\sigma^{-1}=\tau^{q}$, together with the wild inertia (we have also already considered this in Moduli Stacks of Galois Representations, where we called it $\mathrm{WD}/Q$), and get the same moduli space, i.e. $Z^{1}(W_{E}/P,\widehat{G})\cong Z^{1}(W,\widehat{G})$.

Let $F_{n}$ be the free group on $n$ generators. For every map $F_{n}\to W$, we have a map

$\displaystyle Z^{1}(W,\widehat{G})\to Z^{1}(F_{n},\widehat{G})$

The category $\lbrace (n,F_{n})\rbrace$ is a sifted category, and upon taking sifted colimits, we obtain an isomorphism

$\displaystyle \mathrm{colim}_{n,F_{n\to W}}\mathcal{O}(Z^{1}(F_{n},\widehat{G}))\to\mathcal{O}(Z^{1}(W_{E}/P,\widehat{G}))$

There is also a version of this statement that involves higher category theory. It says that the map

$\displaystyle \mathrm{colim}_{n,F_{n\to W}}\mathcal{O}(Z^{1}(F_{n},\widehat{G}))\to\mathcal{O}(Z^{1}(W_{E}/P,\widehat{G}))$

is an isomorphism in the stable $\infty$-category $\mathrm{IndPerf}(B\widehat{G})$. Furthermore the category $\mathrm{Perf}(B\widehat{G})$ generates $\mathrm{Perf}(Z^{1}(W_{E}/P,\widehat{G})/\widehat{G})$ under cones and retracts, and $\mathrm{IndPerf}(Z^{1}(W_{E}/P,\widehat{G})/\widehat{G})$ identifies with the $\infty$-category of $\mathcal{O}(Z^{1}(W_{E}/P, \widehat{G})$-modules inside $\mathrm{IndPerf}(B\widehat{G})$.

If we take invariants under the action of $\widehat{G}$, we then have

$\displaystyle \mathrm{colim}_{n,F_{n\to W}}\mathcal{O}(Z^{1}(F_{n},\widehat{G}))^{\widehat{G}}\to\mathcal{O}(Z^{1}(W_{E}/P,\widehat{G}))^{\widehat{G}}$

Note that $\mathrm{colim}_{n,F_{n\to W}}\mathcal{O}(Z^{1}(F_{n},\widehat{G}))$ is precisely the same data as the algebra of excursion operators. We can see this using the fact that $(Z^{1}(F_{n},\widehat{G}))$ is isomorphic to $\widehat{G}^{n}$, and $\mathcal{O}(Z^{1}(F_{n},\widehat{G}))^{\widehat{G}}$ is functions on $\widehat{G}^{n}$ which are invariant under the action of $\widehat{G}$. But this is the same as the data of an excursion operator $(I,V,\alpha,\beta,(\gamma_{i})_{i\in I})$ ($I$ here has $n$ elements), because such a function is of the form $\langle \beta,\alpha((\gamma_{i})_{i\in I})\rangle$.

Now that we have our description of $\mathcal{O}(Z^{1}(W_{E}/P,\widehat{G}))$ as $\mathrm{colim}_{n,F_{n\to W}}\mathcal{O}(Z^{1}(F_{n},\widehat{G}))$, we can now apply the abstract theory developed earlier to obtain our spectral action.

Let us now focus on the case of $G=\mathrm{GL}_{n}$ and relate the spectral action to the more classical language of Hecke eigensheaves (see also The Global Langlands Correspondence for Function Fields over a Finite Field). Let $L$ be an algebraically closed field over $\mathbb{Q}_{\ell}$. Given an L-parameter $\varphi:W_{E}\to\mathrm{GL}_{n}(L)$, we have an inclusion $i_{\varphi}:\mathrm{Spec}(L)\to Z^{1}(W_{E},\widehat{G})_{L}$ and a sheaf $i_{\varphi *}L$ on $Z^{1}(W_{E},\widehat{G})_{L}$. For any $A\in D(\mathrm{Bun}_{G},\Lambda)$ we can take the spectral action $i_{\varphi *}L \ast A$. This turns out to be a Hecke eigensheaf! However, it is often going to be zero. Still, in work by Johannes AnschÃ¼tz and Arthur-CÃ©sar Le Bras, they show that the above construction can give an example of a nonzero Hecke eigensheaf, by relating the spectral action to an averaging functor, which is an idea that comes from the work of Edward Frenkel, Dennis Gaitsgory, and Kari Vilonen on the geometric Langlands program.

### VIII. The p-adic local Langlands correspondence

The work of Fargues and Scholze deals with the “classical” (i.e. $\ell\neq p$) local Langlands correspondence. As we have seen for example in Completed Cohomology and Local-Global Compatibility, the p-adic local Langlands correspondence (i.e. $\ell=p$) is much more complicated and mysterious compared to the classical case. Still, one might wonder whether the machinery we have discussed here can be suitably modified to obtain an analogous “geometrization” of the p-adic local Langlands correspondence.

Since we are dealing with what we might call p-adic, instead of $\ell$-adic, Galois representations, we would have to replace $Z^{1}(W_{E},\widehat{G})$ with the moduli stack of $(\varphi, \Gamma)$-modules (also known as the Emerton-Gee stack, see also Moduli Stacks of (phi, Gamma)-modules).

We still would like to work with the derived category of some sort of sheaves on $\mathrm{Bun}_{G}$. This is because, in work of Pierre Colmez, Gabriel Dospinescu, and Wieslawa Niziol (and also in related work of Peter Scholze which uses a different approach), the p-adic etale cohomology of the Lubin-Tate tower has been used to realize the p-adic local Langlands correspondence, and we have already seen that the Lubin-Tate tower is related to $\mathrm{Bun}_{G}$ and the Hecke stack. Since p-adic etale cohomology is the subject of p-adic Hodge theory (see also p-adic Hodge Theory: An Overview), we might also expect ideas from p-adic Hodge theory to become relevant.

So now have to find some sort of p-adic replacement for $\mathrm{D}_{\mathrm{lis}}(\mathrm{Bun}_{G},\Lambda)$. It is believed that the correct replacement might be the derived category of almost solid modules, whose theory is currently being developed by Lucas Mann. Some of the ideas are similar to that used by Peter Scholze to formulate p-adic Hodge theory for rigid-analytic varieties (see also Rigid Analytic Spaces), but also involves many new ideas. Let us go through each of the meanings of the words in turn.

The “almost” refers to theory of almost rings and almost modules developed by Gerd Faltings (see also the discussion at the end of Adic Spaces and Perfectoid Spaces). For an $R$-module $M$ over a local ring $R$, we say that $M$ is almost zero if it is annihilated by some element of the maximal ideal of $R$. We define the category of almost $R$-modules (or $R^{a}$-modules) to be the category of $R$-modules modulo the category of almost zero modules.

The “solid” refers to the theory of solid rings and solid modules discussed earlier, although we will use the later language developed by Dustin Clausen and Peter Scholze. Let $A$ be a ring. We define the category of condensed $A$-modules, denoted $\mathrm{Cond}(A)$, to be the category of sheaves of $A$-modules on the category of profinite sets. Given a profinite set $S=\varprojlim S_{i}$, we define $A_{\blacksquare}[S]$ to be the limit $\varinjlim_{A'}\varprojlim_{i}A'[S_{i}]$, where $A'$ runs over all finite-type $\mathbb{Z}$-algebras contained in $A$, and we define the category of solid $A$-modules, denoted $A_{\blacksquare}-\mathrm{Mod}$, to be the subcategory of $\mathrm{Cond}(A)$ generated by $A_{\blacksquare}[S]$. The idea of condensed mathematics is to incorporate topology – for instance the category of compactly generated weak Hausdorff spaces, which forms most of the topological spaces we care about, embeds fully faithfully into the category of condensed sets. On the other hand, condensed abelian groups, rings, modules, etc. have nice algebraic properties, for instance when it comes to forming abelian categories, which topological abelian groups, rings, modules, etc. do not have. The solid rings and solid modules corresponds to “completions”, and in particular they have a reasonable “completed tensor product” that will become useful to us later on when forming derived categories.

Finally, the “derived category” refers to the same idea of a category of complexes with morphisms up to homotopy and quasi-isomorphisms inverted, as we have previously discussed, except, however, that we need to actually not completely forget the homotopies; in fact we need to remember not only the homotopies but the “homotopies between homotopies”, and so on, and for this we need to formulate derived categories in the language of infinity category theory. The reason why we need to this is because our definition will involve “gluing” derived categories, and for this we need to remember the homotopies, including the higher ones.

Let us now look at how Mann constructs this derived category of almost solid modules. Let $\mathrm{Perfd}_{pi}^{\mathrm{aff}}$ be the category of affinoid perfectoid spaces $X=\mathrm{Spa}(A,A^{+})$ together with a pseudouniformizer $\pi$ of $A$. We define a functor $X\mapsto D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)$ as the sheafification of the functor $\mathrm{Spa}(A,A^{+})\to D_{\blacksquare}^{a}(A^{+}/\pi)$ (the derived category of almost solid $A^{+}/\pi$-modules) on $\mathrm{Perfd}_{\pi}^{\mathrm{aff}}$ equipped with the pro-etale topology.

If $X=\mathrm{Spa}(A,A^{+})$ is weakly perfectoid of finite type over some totally disconnected space, then $D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)$ is just $D_{\blacksquare}^{a}(A^{+}/\pi)$. More generally, $X$ will gave a pro-etale cover by some $Y$ which is weakly perfectoid of finite type over some totally disconnected space, and $D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)$ can be expressed as the limit $\varprojlim_{n} D_{\blacksquare}^{a}(B_{n}^{+}/\pi)$, where $Y_{n}=\mathrm{Spa}(B_{n},B_{n}^{+})$, and $Y_{n}$ runs over is the degree $n$ part of the Cech nerve of $Y$.

Now let $X$ be a small v-stack. There is a unique hypercomplete (this means it satisfies descent along all hypercovers, which are generalizations of the Cech nerve) sheaf on $X_{v}$ that agrees with the functor $Y\mapsto D_{\blacksquare}^{a}(\mathcal{O}_{Y}^{+}/\pi)$ for every affinoid perfectoid space $Y$ in $X_{v}$. We define $D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+})$ to be the global sections of this sheaf. This is the construction that we want to apply to $X=\mathrm{Bun}_{G}$.

The derived category of almost solid modules comes with a six-functor formalism (see also Perverse Sheaves and the Geometric Satake Equivalence). Let $Y\to X$ be a map. The derived pullback $^{*}:D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)\to D_{\blacksquare}^{a}(\mathcal{O}_{Y}^{+}/\pi)$ is the restriction map of the sheaf $D_{\blacksquare}^{a}$. The derived pushforward $^{*}:D_{\blacksquare}^{a}(\mathcal{O}_{Y}^{+}/\pi)\to D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)$ is defined to be the right adjoint to the derived pullback. The derived tensor product $-\otimes-$ and derived Hom $\underline{\mathrm{Hom}}(-,-)$ are inherited from $D_{\blacksquare}^{a}(A^{+}/\pi)$.

The remaining two functors in the six-functor formalism are the “shriek” functors $f_{!}$ and $f^{!}$. If $f:Y\to X$ is a “nice” enough map, we have a factorization of $f$ into a composition $g\circ j$ where $j:Y\to Z$ is etale and $g:Z\to X$ is proper, and we define

$\displaystyle f_{!}:=g_{*}\circ j_{!}$

where $j_{!}$ is the right-adjoint to $j_{*}$. We then define $f^{!}:D_{\blacksquare}^{a}(\mathcal{O}_{Y}^{+}/\pi)\to D_{\blacksquare}^{a}(\mathcal{O}_{X}^{+}/\pi)$ to be the right-adjoint to $f_{!}$. The six-functor formalism satisfies certain important properties, such as functoriality of $f_{*}, f^{*}, f_{!}, f^{!}$, proper base change for $f_{!}$, and a projection formula for $f_{!}$. In Lucas Mann’s thesis, he uses the six-functor formalism he has developed to prove Poincare duality for a rigid-analytic variety $X$ of pure dimension $d$ over an algebraically closed nonarchimedean field $K$ of mixed characteristic:

$\displaystyle H_{et}^{i}(X,\mathbb{F}_{\ell})\otimes_{\mathbb{F}_{\ell}} H_{et}^{2d-i}(X,\mathbb{F}_{\ell})\to \mathbb{F}_{\ell}(-d)$

As of the moment, there are still many questions regarding a possible geometrization of the p-adic local Langlands program. As more developments are worked out, we hope to be able to discuss them in future posts on this blog, together with the different aspects of the theory that has already been developed, and the many other different future directions that it may lead to.

References:

Geometrization of the Local Langlands Correspondence by Laurent Fargues and Peter Scholze

Geometrization of the Local Langlands Program (notes by Tony Feng from a workshop at McGill University)

The Geometric Langlands Conjecture (notes from Oberwolfach Arbeitsgemeinschaft)

Berkeley Lectures on p-adic Geometry by Peter Scholze and Jared Weinstein

Etale Cohomology of Diamonds by Peter Scholze

On the Kottwitz Conjecture for Local Shtuka Spaces by David Hansen, Tasho Kaletha, and Jared Weinstein

Averaging Functors in Fargues’ Program for GL_n by Johannes AnschÃ¼tz and Arthur-CÃ©sar Le Bras

Cohomologue p-adique de la Tour de Drinfeld: le Cas de la Dimension 1 by Pierre Colmez, Gabriel Dospinescu, and WiesÅ‚awa NizioÅ‚

Lectures on Condensed Mathematics by Peter Scholze

# Adic Spaces and Perfectoid Spaces

At the end of Formal Schemes we hinted at the concept of adic spaces, which subsumes both formal schemes and rigid analytic spaces (see also Rigid Analytic Spaces). In this post we will define what these are, give some examples, and introduce and discuss briefly a very special type of adic spaces, the perfectoid spaces, which generalizes what we discussed in Perfectoid Fields.

We begin by discussing the rings that we will need to construct adic spaces. A topological ring (see also Formal Schemes) $A$ is called a Huber ring if it contains an open subring $A_{0}$ which is adic with respect to a finitely generated ideal of definition $I$ contained in $A_{0}$. This means that the nonnegative powers of $I$ form a basis of open neighborhoods of $0$. The subring $A_{0}$ is called a ring of definition for $A$.

Here are some examples of Huber rings:

• Any ring $A$, equipped with the discrete topology, with the ring of definition $A_{0}=A$, and the ideal of definition $I=(0)$.
• The p-adic numbers $A=\mathbb{Q}_{p}$, with the p-adic topology, with the ring of definition $A_{0}=\mathbb{Z}_{p}$, and the ideal of definition $I=(p)$.
• The field of formal Laurent series $A=k((x))$ over some field $k$, with the metric topology given by the nonarchimedean valuation defined by the order of vanishing at $0$, with the ring of definition $A_{0}=k[[x]]$, and the ideal of definition $I=(x)$.
• Generalizing the previous two examples, any nonarchimedean field $K$ is an example of a Huber ring, with ring of definition $A_{0}=\lbrace x:\vert x\vert\leq 1\rbrace$ and ideal of definition $I=(\varpi)$ for some $\varpi$ satisfying $0<\vert\varpi\vert <1$.

A subset $S$ of a Huber ring, or more generally a topological ring, is called bounded if, for any open neighborhood $U$ of $0$, we can always find another open neighborhood $V$ of $0$ such that all the products of elements of $V$ with elements of $S$ are contained inside $U$. An element of a Huber ring is called power bounded if the set of all its nonnegative powers is bounded. For a Huber ring $A$ we denote the set of power bounded elements by $A^{\circ}$. Any element of the ring of definition will always be power bounded.

With the definition of power bounded elements in hand we give two more examples of Huber rings:

• Let $K$ be a nonarchimedean field as in the previous example, and let $\varpi$ again be an element such that $0<\vert\varpi\vert<1$. Its set of power bounded elements is given by $K^{\circ}=\lbrace x:\vert x\vert\leq 1\rbrace$. Now let $A=K^{\circ}[[T_{1},\ldots, T_{n}]]$ with the $I$-adic topology (see also Formal Schemes), where $I$ is the ideal $(\varpi, T_{1},\ldots,T_{n})$. Then $A$ is a Huber ring with ring of definition $A_{0}=A$ and ideal of definition $I$.
• Let $K$, $K^{\circ}$, and $\varpi$ be as above. Consider the Tate algebra $A= K\langle T_{1},\ldots,T_{n}\rangle$ (see also Rigid Analytic Spaces), a topological ring whose topology is generated by a basis of open neighborhoods of $0$ given by $\varpi^{n} A$. Then $A$ is a Huber ring with ring of definition given by $A_{0}=K^{\circ}\langle T_{1},\ldots,T_{n}\rangle$ and ideal of definition given by $(\varpi)$.

A subring $A^{+}$ of a Huber ring $A$ which is open, integrally closed, and power bounded is called a ring of integral elements. A Huber pair is a pair $(A,A^{+})$ consisting of a Huber ring $A$ and a ring of integral elements $A^{+}$ contained in $A$. Note that the set of power bounded elements, $A^{\circ}$, is itself an example of a ring of integral elements! In fact, in many examples that we will consider the relevant Huber pair will be of the form $(A,A^{\circ})$.

Now we introduce the adic spectrum of an Huber pair $(A,A^{+})$, denoted $\mathrm{Spa}(A,A^{+})$. They will form the basic building blocks of adic spaces, like affine schemes are to schemes or affinoid rigid analytic spaces are to rigid analytic spaces. We will proceed in the usual manner; first we define the underlying set, then we put a topology on it, and then construct a structure sheaf – except that in the case of adic spaces, what we will construct is merely a structure presheaf and may not always be a sheaf! Then we will define more general adic spaces to be something that locally looks like the adic spectrum of some Huber pair.

The underlying set of the adic spectrum $\mathrm{Spa}(A,A^{+})$ is the set of equivalence classes of continuous valuations $\vert\cdot\vert$ on $A$ such that $\vert a\vert\leq 1$ whenever $a$ is in $A^{+}$. From now on we will change our notation and let $x$ denote a continuous valuation, and we write $f$ for an element of $A$, so that we can write $\vert f(x)\vert$ instead of $\vert a\vert$, to drive home the idea that these (equivalence classes of) continuous valuations are the points of our space, on which elements of our ring $A$ are functions.

The underlying topological space of $\mathrm{Spa}(A,A^{+})$ is then obtained from the above set by equipping it with the topology generated by the subsets of the form

$\displaystyle \lbrace x: \vert f(x)\vert \leq \vert g(x)\vert \neq 0\rbrace$

for all $f,g\in A$.

Let us now define the structure presheaf. First let us define rational subsets. Let $T$ be a subset of $A$ such that the set consisting of all products of elements of $T$ with elements of $A$ is an open subset of $A$. We define the rational subset

$\displaystyle U\left(\frac{T}{s}\right):=\lbrace x:\vert t(x)\vert \leq\vert s(x)\vert\neq 0\rbrace$

for all $t\in T$. If $U$ is a rational subset of the Huber pair $(A,A^{+})$, then there is a Huber pair $(\mathcal{O}_{ \mathrm{Spa}(A,A^{+}) }(U),\mathcal{O}_{ \mathrm{Spa}(A,A^{+}) }^{+}(U))$ such that the map $\mathrm{Spa}(A,A^{+})\to \mathrm{Spa}(\mathcal{O}_{X}(U),\mathcal{O}_{X}^{+}(U))$ factors through $U$ and this map is universal among such maps.

Now we define our structure presheaf by assigning to any open set $W$ the Huber pair $(\mathcal{O}_{ \mathrm{Spa}(A,A^{+} )}(W) , \mathcal{O}_{ \mathrm{Spa}(A,A^{+} )}^{+}(W))$ where $\mathcal{O}_{ \mathrm{Spa}(A,A^{+} )}(W):=\varprojlim \mathcal{O}(U)$ where the limit is taken over all inclusions of rational subsets $U\subseteq W$, and $\mathcal{O}_{ \mathrm{Spa}(A,A^{+} )}^{+}(W)$ is similarly defined.

Again, the structure presheaf of $\mathrm{Spa}(A,A^{+})$ may not necessarily be a sheaf; in the case that it is, we say that the Huber pair $(A,A^{+})$ is sheafy. In this case we will also refer to $\mathrm{Spa}(A,A^{+})$ (the underlying topological space together with the structure sheaf) as an affinoid adic space. We can now define more generally an adic space as the data of a topological space $X$, a structure sheaf $\mathcal{O}_{X}$, and for each point $x$ of $X$, an equivalence class of continuous valuations on the stalk $\mathcal{O}_{X,x}$, such that it admits a covering of $U_{i}$‘s giving rise to the data of a structure sheaf and a collection of valuations, all of which is isomorphic to that given by an affinoid adic space.

Recall that we said above that the set of power-bounded elements, $A^{\circ}$, is an example of a ring of integral elements. Therefore $(A,A^{\circ})$ is an example of a Huber pair. It is convention that, if our Huber pair is given by $(A,A^{\circ})$ we write $\mathrm{Spa}(A)$ instead of $\mathrm{Spa}(A,A^{\circ})$. Let us now look at some examples of adic spaces.

Consider $\mathrm{Spa}(\mathbb{Q}_{p},\mathbb{Z}_{p})$ (which by the previous paragraph we may also simply write as $\mathrm{Spa}(\mathbb{Q}_{p})$, since $\mathbb{Z}_{p}$ is the set of power-bounded elements of $\mathbb{Q}_{p}$). Then the underlying topological space of $\mathrm{Spa}(\mathbb{Q}_{p},\mathbb{Z}_{p})$ consists of one point, corresponding to the usual p-adic valuation on $\mathbb{Q}_{p}$.

Next we consider $\mathrm{Spa}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ (which by the same idea as above we may write as $\mathrm{Spa}(\mathbb{Z}_{p}$). The underlying topological space of $\mathrm{Spa}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ now consists of two points, one of which is open, and one of which is closed. The open (or “generic”) point corresponds once again to the usual p-adic valuation $\mathbb{Q}_{p}$ restricted to $\mathbb{Z}_{p}$. The closed point is the valuation which sends any $\mathbb{Z}_{p}$ which contains a power of $p$ to $0$, and sends everything else to $1$.

More complicated is $\mathrm{Spa}(\mathbb{Q}_{p}\langle T\rangle,\mathbb{Z}_{p}\langle T\rangle)$, also known as the adic closed unit disc. We can compare this with the closed unit disc discussed in Rigid Analytic Spaces. In that post we the underlying set of the closed unit disc was given by the set of maximal ideals of $\mathbb{Q}_{p}\langle T\rangle$. But every such maximal ideal gives rise to a continuous valuation on $\mathbb{Q}_{p}\langle T\rangle$. So every point of the rigid analytic closed unit disc gives rise to a point of the adic closed unit disc. But the adic closed unit disc has more points!

An example of a point of the adic closed unit disc is as follows. Let $\Gamma$ be the ordered abelian group $\mathbb{R}_{>0}\times \gamma^{\mathbb{Z}}$, where $\gamma$ is such that $a<\gamma<1$ for all real numbers $a<1$ in this order. Define a continuous valuation $\vert\cdot\vert_{x^{-}}$ on $\mathbb{Q}_{p}\langle T\rangle$ as follows:

$\displaystyle \vert \sum_{n=0}a_{n}T^{n}\vert_{x^{-}}=\sup_{n\geq 0}\vert a_{n}\vert\gamma^{n}$

This valuation defines a point $x^{-}$ of the adic closed unit disc. This valuation sees $T$ as being infinitesimally less than $1$, i.e. $\vert T(x^{-})\vert=\vert T\vert_{x^{-}}<1$, but $\vert T(x^{-})\vert>a$ for all $a<1$ in $\mathbb{Q}_{p}$. This point $x^{-}$ serves a useful purpose. Recall in Rigid Analytic Spaces that we were unable to disconnect the closed unit disc into two open sets (the “interior” and the “boundary”) because of the Grothendieck topology. In this case we do not have a Grothendieck topology but an honest-to-goodness actual topology, but still we will not be able to disconnect the adic closed unit disc into the analogue of these open sets. This is because the disjoint union of the open sets $\cup_{n\geq 1}\vert T^{n}(x)\vert<\vert p\vert$ and $\vert T(x)\vert=1$ will not miss the point $x^{-}$, so just these two will not cover the adic closed unit disc.

Finally let us consider $\mathrm{Spa}(\mathbb{Z}_{p}[[ T]],\mathbb{Z}_{p}[[T]])$. This is the adic open unit disc. This has a map to $\mathrm{Spa}(\mathbb{Z}_{p},\mathbb{Z}_{p})$, and the preimage of the generic point of $\mathrm{Spa}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ is called the generic fiber (this generic fiber may also be thought of as the adic open unit disc over $\mathbb{Q}_{p}$, which makes it more comparable to the example of the adic closed unit disc earlier). The adic open unit disc has many interesting properties (for example it is useful to study in closer detail if one wants to study the fundamental curve of p-adic Hodge theory, also known as the Fargues-Fontaine curve) but we will leave this to future posts.

Let us now introduce a very special type of adic space. First we define a very special type of Huber ring. We say that a Huber ring $A$ is Tate if it contains a topologically nilpotent unit (also called a pseudo-uniformizer). An element $\varpi$ is topologically nilpotent if its sequence of powers $\varpi, \varpi^{2},\ldots$ converges to $0$. For example, the Huber ring $\mathbb{Q}_{p}$ (as discussed above) is Tate, with pseudo-uniformizer given by $p$.

If, in addition to being Tate, the Huber ring $A$ is complete, uniform (which means that $A^{\circ}$ is bounded in $A$), and contains a pseudo-uniformizer $\varpi$ such that $\varpi^{p}\vert p$ in $A^{\circ}$ and the p-th power map map $A/\varpi\to A/\varpi^{p}$ is an isomorphism, then we say that $A$ is perfectoid. As can be inferred from the name, this generalizes the perfectoid fields we introduced in Perfectoid Fields. We recall the important property of perfectoid fields (which we can now generalize to perfectoid rings) – if $R$ is perfectoid, then the category of finite etale $R$-algebras is equivalent to the category of finite etale $R^{\flat}$-algebras, where $R^{\flat}$ is the tilt of $R$. For fields, this manifests as an isomorphism of their absolute Galois groups, which generalizes the famous Fontaine-Wintenberger theorem.

A perfectoid space is an adic space which can be covered by affinoid adic spaces $\mathrm{Spa}(A,A^{+})$, where $A$ is perfectoid. If $X$ is a perfectoid space, we can associate to it its tilt $X^{\flat}$, by taking the tilts of the affinoid adic spaces that cover $X$ and gluing them together. In fact, for a fixed perfectoid space $X$, there is an equivalence of categories between perfectoid spaces over $X$, and perfectoid spaces over $X^{\flat}$. This is the geometric version of the equivalence of categories of finite etale algebras over a perfectoid ring and its tilt. In addition, although we will not do it in this post, one can define the etale sites of $X$ and $X^{\flat}$, and these will also be equivalent.

To end this post, we mention some properties of perfectoid spaces that make it useful form some applications. It turns out that if $X$ is a smooth rigid analytic space, it always has a pro-etale cover by affinoid perfectoid spaces. A pro-etale map $U\to X$ may be thought of as a completed inverse limit $\varprojlim_{i} U_{i}\to X$, where each $U_{i}\to X$ is an etale map. An example of a pro-etale cover is as follows. If we let $\mathbb{Q}_{p}^{\mathrm{cycl}}$ be the perfectoid field given by the completion of $\cup_{n}\mathbb{Q}_{p}(\mu_{p^{n}})$ (this is somewhat similar to the example involved in the Fontaine-Wintenberger theorem in Perfectoid Fields), then $\mathrm{Spa}(\mathbb{Q}_{p}^{\mathrm{cycl}})$ is a pro-etale cover of $\mathrm{Spa}(\mathbb{Q}_{p})$. To see why this is pro-etale, note that a finite separable extension of fields is etale, and $\mathbb{Q}_{p}^{\mathrm{cycl}}$ is the completion of the infinite union (direct limit) of such finite separable extensions $\mathbb{Q}_{p}(\mu_{p^{n}})$ of $\mathbb{Q}_{p}$, but looking at the adic spectrum means the arrows go the other way, which is why we think of it as an inverse limit.

Another property of perfectoid spaces is the following. If $U$ is a perfectoid affinoid space over $\mathbb{C}_{p}$, then for all $i>0$ $H^{i}(U_{\mathrm{et}},\mathcal{O}_{X}^{+})$ (this is the cohomology of the sheaf of functions bounded by $1$ on the etale site of $X$) is annihilated by the maximal ideal of $\mathcal{O}_{\mathbb{C}_{p}}$. We also say that $H^{i}(U_{\mathrm{et}},\mathcal{O}_{X}^{+})$ is almost zero.

Together, what these two properties tell us is that we can compute the cohomology of a smooth rigid analytic space via the Cech complex associated to its covering by perfectoid affinoid spaces. This has been applied in the work of Peter Scholze to the mod p cohomology of the rigid analytic space associated to a Siegel modular variety, in order to relate it to Siegel cusp forms (see also Siegel modular forms). In this case the covering by perfectoid affinoid spaces is provided by a Siegel modular variety at “infinite level”, which happens to have a map (called the period map) to a Grassmannian (the moduli space of subspaces of a fixed dimension of some fixed vector space), and there are certain properties that we can then make use of (for instance, the line bundle on the Siegel modular variety whose sections are cusp forms can be obtained via pullback from a certain line bundle on the Grassmannian) together with p-adic Hodge theoretic arguments to relate the mod p cohomology to Siegel cusp forms.

All this has the following stunning application. Recall that in we may obtain Galois representations from cusp forms (see for example Galois Representations Coming From Weight 2 Eigenforms). This can also be done for Siegel cusp forms more generally. These cusp forms live on a modular curve or Siegel modular variety, which are obtained as arithmetic manifolds, double quotients $\Gamma\backslash G(\mathbb{R})/K$ of a real Lie group $G$ (in this case the symplectic group) by a maximal compact open subgroup $K$ and an arithmetic subgroup $\Gamma$. But they are also algebraic varieties, so can be studied using the methods of algebraic geometry (see also Shimura Varieties). For example, we can use etale cohomology to obtain Galois representations.

But not all arithmetic manifolds are also algebraic varieties! For instance we have Bianchi manifolds, which are double quotients $\Gamma\backslash\mathrm{SL}_{2}(\mathbb{C})/\mathrm{SU}(2)$, where $\Gamma$ can be, say, a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z}[i])$ (or we can also replace $\mathbb{Z}[i]$ with the ring of integers of some other imaginary quadratic field). The groups involve look complex, but the theory of algebraic groups and in particular the method of Weil restriction allows us to look at them as real Lie groups. This is not an algebraic variety (one way to see this is that $\mathrm{SL}_{2}(\mathbb{C})/\mathrm{SU}(2)$ is hyperbolic 3-space, so a Bianchi manifold has 3 real dimensions and as such cannot be related to an algebraic variety the way a complex manifold can).

Still, it has been conjectured that the singular cohomology (in particular its torsion subgroups) of such arithmetic manifolds which are not algebraic varieties can still be related to Galois representations! And for certain cases this has been proved using the following strategy. First, these arithmetic manifolds can be found as an open subset of the boundary of an appropriate compactification of a Siegel modular variety. Then, methods from algebraic topology (namely, the excision long exact sequence) allow us to relate the cohomology of the arithmetic manifold to the cohomology of the Siegel modular variety.

On the other hand, by our earlier discussion, the covering of the (rigid analytic space associated to the) Siegel modular variety by affinoid perfectoid spaces given by the Siegel modular variety at infinite level, together with the period map of the latter to the Grassmannian, allows one to show that the mod p cohomology of Siegel modular varieties is related to Siegel cusp forms, and it is known how to obtain Galois representations from these. Putting all of these together, this allows us to obtain Galois representations from the cohomology of manifolds which are not algebraic varieties.

A deeper look at aspects of perfectoid spaces, as well as their generalizations and applications (including a more in-depth look at the application to the mod p cohomology of Siegel modular varieties discussed in the previous couple of paragraphs), will hopefully be discussed in future posts.

References:

Perfectoid space on Wikipedia